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Abstract 

The present article demonstrates that changes in biodiversity through the 
Phanerozoic correlate with a hyperbolic model (widely used in demography and 
macrosociology) much more strongly than with exponential and logistic models 
(traditionally used in population biology and extensively applied to fossil biodi-
versity as well). The latter models imply that changes in diversity are guided by 
a first-order positive feedback (more ancestors – more descendants) and/or  
a negative feedback arising from resource limitation. The hyperbolic model im-
plies a second-order positive feedback. The authors demonstrate that the hyper-
bolic pattern of the world population growth arises from a second-order positive 
feedback between the population size and the rate of technological growth (this 
can also be identified with the collective learning mechanism). The feedback 
between the diversity and community structure complexity can also contribute 
to the hyperbolic character of biodiversity. This suggests that some mechanisms 
vaguely resembling the collective learning might have operated throughout  
the biological phase of Big History. Our findings suggest that we can trace 
rather similar macropatterns within both the biological and social phases of Big 
History which one can describe in a rather accurate way with very simple 
mathematical models.  

Keywords: biological phase of Big History, social phase of Big History, mathe-
matical modeling, collective learning, positive feedback, biodiversity, demogra-
phy, sociology, paleontology, geology, hyperbolic growth. 

In 2005, in the town of Dubna, near Moscow, at what seems to have 
been the first ever international conference devoted specifically to Big 
History studies, the two authors of the present article – sociolo-
gist/anthropologist Andrey Korotayev and biologist/paleontologist 
Alexander Markov – one after another demonstrated two diagrams.1 
One of those diagrams illustrated the dynamics of the population of 
China between 700 BCE and 1851 CE, the other illustrated the dynamics 
                                                           
1 We would like to emphasize that we saw each other at that session for the first time, so 

we had no chance to arrange in advance the demonstration of those two diagrams.  
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of marine Phanerozoic biodiversity during the last 542 million years (see 
Fig. 1):  

 
a 

 
b 

Fig. 1. Similarity of the dynamics of Phanerozoic marine biodiversity and long-
term population dynamics of China: а – Population dynamics of China 
(million people, 700 BCE – 1851 CE), based on estimates in Korotayev, 
Malkov, and Khaltourina (2006b: 47–88); b – Global change in marine 
biodiversity (number of genera, N) through the Phanerozoic based on 
empirical data surveyed in Markov and Korotayev (2007a) 
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Nevertheless, one can hardly ignore the striking similarity between two 
diagrams depicting the development of rather different systems (human 
population, on the one hand, and biota, on the other) at different time 
scales (hundreds of years, on the one hand, and millions of years, on the 
other) studied by different sciences (Historical Demography, on the one 
hand, and Paleontology, on the other) using different sources (demo-
graphic estimates, on the one hand, and paleontological chronicles, on 
the other hand). What are the causes of this similarity in the develop-
ment dynamics of rather different systems?  

*   *   *  
In 1960, von Foerster, Mora, and Amiot published a striking discov-

ery in the journal Science. They showed that between 1 and 1958 CE the 
world's population (N) dynamics can be described in an extremely accu-
rate way with an astonishingly simple equation:2  

tt

C
N t 


0

, (1) 

where Nt is the world population at time t, and C and t0 are constants, 
with t0 corresponding to an absolute limit (‘singularity’ point) at which 
N would become infinite.  

Of course, von Foerster and his colleagues did not imply that one 
day the world population would actually become infinite. The real im-
plication was that prior to 1960 the world population growth for many 
centuries had followed a pattern which was about to come to an end 
and to transform into a radically different pattern. Note that this predic-
tion started to come true only a few years after the ‘Doomsday’ paper 
had been published, because after the early 1970s the World System growth 
in general (and world population growth in particular) began to diverge more 
and more from the blow-up regime, and now it is not hyperbolic any more with 
its pattern being closer to a logistic one (see, e.g., Korotayev, Malkov, and 
Khaltourina 2006a, where we present a compact mathematical model 
that describes both the hyperbolic development of the World System in 
the period prior to the early 1970s, and its withdrawal from the blow-up 
regime in the subsequent period; see also Korotayev 2009).  

                                                           
2 To be exact, the equation proposed by von Foerster and his colleagues looked as follows: 
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 . However, as von Hoerner (1975) and Kapitza (1999) showed, it can be 

simplified as 
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Parameter t0 was estimated by von Foerster and his colleagues as 
2026.87, which corresponded to November 13, 2006; this allowed them 
to give their article an attractive and remarkable title – ‘Doomsday: Fri-
day, 13 November, A.D. 2026’.  

The overall correlation between the curve generated by the von Fo-
erster equation and the most detailed series of empirical estimates looks 
as follows (see Fig. 2).  

 
Fig. 2. Correlation between empirical estimates of world population (in millions, 

AD 1000–1970) and the curve generated by the von Foerster equation  

Note: black markers correspond to empirical estimates of the world population 
by McEvedy and Jones (1978) for the interval between 1000 and 1950 and 
the U.S. Bureau of the Census (2014) for 1950–1970. The grey curve has 
been generated by the von Foerster equation (1). 

The formal characteristics are as follows: R = 0.998; R2 = 0.996; p =  
= 9.4 × × 10-17 ≈ 1 × 10–16. For readers unfamiliar with mathematical sta-
tistics we can explain that R2 can be regarded as a measure of the fit be-
tween the dynamics generated by a mathematical model and the em-
pirically observed situation, and can be interpreted as the proportion of 
the variation accounted for by the respective equation. Note that 0.996 
also can be expressed as 99.6 per cent.3 Thus, the von Foerster equation 

                                                           
3 The second characteristic (p, standing for ‘probability’) is a measure of the correlation's 

statistical significance. A bit counter-intuitively, the lower the value of p, the higher the sta-
tistical significance of the respective correlation. This is because p indicates the probabil-
ity that the observed correlation could be accounted solely by chance. Thus, p = 0.99  
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accounts for an astonishing 99.6 per cent of all the macrovariation in the 
world population, from 1000 CE through 1970, as estimated by 
McEvedy and Jones (1978) and the U.S. Bureau of the Census (2014).4  

Note also that the empirical estimates of world population align in 
an extremely accurate way along the hyperbolic curve, which convinc-
ingly justifies the designation of the pre-1970s world population growth 
pattern as ‘hyperbolic’.  

To start with, the von Foerster equation 
tt

C
N t 


0

 is just a solution 

of the following differential equation (see, e.g., Korotayev, Malkov, 
Khaltourina 2006a: 119–20):   

C

N

dt

dN 2

 . 
(2) 

This equation can be also written as:  
2aN

dt

dN
 , 

(3)

where 
C

a
1

 .  

What is the meaning of this mathematical expression, 2aN
dt

dN
 ? In 

our case, dN/dt denotes an absolute population growth rate at a certain 
moment of time. Thus, this equation shows that at any moment of time 
an absolute population growth rate should be proportional to the 
square of population at this moment. 

Note that this significantly demystifies the problem of the world 
population hyperbolic growth. Now to explain this hyperbolic growth, 
we should just explain why for many millennia the absolute rate  
                                                                                                                                 

indicates an extremely low statistical significance, as it means that there are 99 chances 
out of 100 that the observed correlation is the result of a coincidence, and, thus, we can 
be quite confident that there is no systematic relationship (at least, of the kind that we 
study) between the two respective variables. On the other hand, p = 1 × 10–16 indicates an 
extremely high statistical significance for the correlation, as it means that there is only 
one chance out of 10000000000000000 that the observed correlation is the result of pure 
coincidence (in fact, a correlation is usually considered as statistically significant with  
p < 0.05).  

4 In fact, with slightly different parameters (С = 164890.45; t0 = 2014) the fit (R2) between 
the dynamics generated by the von Foerster equation and the macrovariation of world 
population for CE 1000–1970 as estimated by McEvedy and Jones (1978) and the U.S. Bu-
reau of the Census (2014) reaches 0.9992 (99.92 per cent), whereas for 500 BCE – 1970 CE 
this fit increases to 0.9993 (99.93 per cent) (with the following parameters: С = 171042.78; 
t0 = 2016).  
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of world population growth tended to be proportional to the square of 
population.  

The main mathematical models of the hyperbolic pattern of the 
world's population growth (Taagapera 1976, 1979; Kremer 1993; Cohen 
1995; Podlazov 2004; Tsirel 2004; Korotayev 2005, 2007, 2008, 2009, 2012; 
Korotayev, Malkov, and Khaltourina 2006a: 21–36; Khaltourina, 
Malkov, and Korotayev 2006; Golosovsky 2010; Korotayev and Malkov 
2012) are based on the following two assumptions:  

1) ‘the Malthusian (1978 [1798]) assumption that population is lim-
ited by the available technology, so that the growth rate of population is 
proportional to the growth rate of technology’ (Kremer 1993: 681–682).5 
This statement seems rather convincing. Indeed, throughout most of 
human history the world population was limited by the technologically 
determined ceiling of land carrying capacity. For example, with forag-
ing subsistence technologies the Earth could hardly support more than 
8 million people, because the amount of naturally available useful bio-
mass on the planet is limited, and the world population could overgrow 
this limit only when people started to apply various means to artificially 
increase the amount of available biomass, that is with a transition from 
foraging to food production. However, the extensive agriculture can only 
support a limited number of people, and world population further 
growth became possible only with the intensification of agriculture and 
other technological improvements (see, e.g., Turchin 2003; Korotayev, 
Malkov, and Khaltourina 2006a, 2006b; Korotayev and Khaltourina 2006).  

However, it is well known that the technological level is not a con-
stant, but a variable (see, e.g., Grinin 2007a, 2007b, 2012). And in order to 
describe its dynamics the second basic assumption is employed:  

2) ‘High population spurs technological change because it increases 
the number of potential inventors…6 In a larger population there will be 
proportionally more people lucky or smart enough to come up with 
new ideas’ (Kremer 1993: 685), thus, ‘the growth rate of technology is 
proportional to total population’.7 In fact, here Kremer uses the main 

                                                           
5 In addition to this, the absolute growth rate is proportional to the population number – 

with a given relative growth rate a larger population will increase more in absolute 
numbers than a smaller one.  

6 ‘This implication flows naturally from the non-rivalry of technology… The cost of inventing 
a new technology is independent of the number of people who use it. Thus, holding 
constant the share of resources devoted to research, an increase in population leads to an 
increase in the probability of technological change’ (Kremer 1993: 681); note that in the 
framework proposed by David Christian (2005) this corresponds precisely to the pattern of 
collective learning. 

7 Note that ‘the growth rate of technology’ means here the relative growth rate (i.e. the level 
to which technology will grow in a given unit of time in proportion to the level observed at 
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assumption of the Endogenous Technological Growth theory (Kuznets 
1960; Grossman and Helpman 1991; Aghion and Howitt 1998; Simon 
1977, 2000; Komlos and Nefedov 2002; Jones 1995, 2005, etc.). To our 
knowledge, this supposition was first put forward by Simon Kuznets 
(1960), so we will denote a corresponding type of dynamics as ‘Kuznet-
sian’, while the systems in which the ‘Kuznetsian’ population-
technological dynamics combines with the ‘Malthusian’ demographic 
one will be denoted as ‘Malthusian-Kuznetsian’. In general, we find this 
assumption rather plausible – in fact, it is quite probable that, ceteris 
paribus, within a given period of time, a billion people will make ap-
proximately a thousand times more inventions than a million people.  

This assumption was expressed by Kremer mathematically in the 
following way:  

kNT
dt

dT
 . 

(4) 

Actually, this equation just says that the absolute technological 
growth rate at a given moment of time (dT/dt) is proportional to the 
technological level (T) observed at this moment (the wider is the techno-
logical base, the more inventions could be made on its basis), and, on 
the other hand, it is proportional to the population (N) (the larger the 
population, the larger the number of potential inventors).8 

The resultant models provide a rather convincing explanation of why 
throughout most of human history the world population followed the hy-
perbolic pattern with an absolute population growth rate tending to be 
proportional to N2. For example, why would the growth of population 
from, say, 10 million to 100 million, result in the hundredfold growth of 
dN/dt? The above mentioned models explain this rather convincingly. The 
point is that the growth of world population from ten to a hundred mil-
lion implies that human subsistence technologies also grew approxi-
mately ten times (given that it will prove, after all, to be able to support 
a ten times larger population). On the other hand, the tenfold popula-
tion growth also implies a tenfold growth of the number of potential 
inventors, and, consequently, a tenfold increase in a relative technologi-
cal growth rate. Hence, the absolute technological growth rate would 
grow 10 × 10 = 100 times (as Equation 4 shows that an order of magni-
tude larger number of people with an order of magnitude broader tech-
nological basis would likely make two orders of magnitude more inven-
                                                                                                                                 

the beginning of this period).  
8 Kremer did not test this hypothesis empirically in a direct way. Note, however, that our 

own empirical test of this hypothesis has supported it (see Korotayev, Malkov, Khal-
tourina 2006b: 141–146). 
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tions). And as throughout the Malthusian epoch the world population 
(N) tended to the technologically determined carrying capacity ceiling 
of the Earth, we have good reason to expect that dN/dt will also grow 
just about 100 times.  

In fact, one can demonstrate (see, e.g., Korotayev, Malkov, and Khal-
tourina 2006a, 2006b; Korotayev and Khaltourina 2006) that the hyper-
bolic pattern of the world's population growth can be explained by the 
nonlinear second order positive feedback mechanism that was shown 
long ago to generate just the hyperbolic growth, known also as the 
‘blow-up regime’(see, e.g., Kurdyumov 1999). In our case this nonlinear 
second order positive feedback looks as follows: more people – more 
potential inventors – a faster technological growth – a faster growth of 
the Earth's carrying capacity – a faster population growth – with more 
people you also have more potential inventors – hence, faster techno-
logical growth, and so on (see Fig. 3).  

 
Fig. 3. Cognitive scheme of the nonlinear second order positive feedback be-

tween technological development and demographic growth 

Note that the relationship between technological development and 
demographic growth cannot be analyzed through any simple cause-and-
effect model, as we observe a true dynamic relationship between these 
two processes – each of them is both the cause and the effect of the other.  

Note also that the process discussed above should be identified with the 
process of collective learning (on the notion of ‘collective learning’ see first of 
all Christian 2005: 146–148; see also David Christian's and David Baker's 
contributions to the present volume). Respectively, the mathematical 
models of the World System development discussed in this article can 
be interpreted as mathematical models of the influence of collective 
learning on the global social evolution. Thus, a rather peculiar hyper-
bolic shape of the acceleration of the global development observed prior 
to the early 1970s may be regarded just as a product of the global collec-
tive learning. Elsewhere we have also shown (Korotayev, Malkov, and 
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Khaltourina 2006a: 34–66) that for the period prior to the 1970s the World 
System economic and demographic macrodynamics driven by the above 
mentioned positive feedback loops can be described mathematically in a 
rather accurate way with the following extremely simple mathematical 
model:  

,aSN
dt

dN
                                                 (5) 

,bNS
dt

dS
                                                  (6) 

while the world GDP (G) can be calculated using the following equa-
tion:  

G = mN + SN, (7)
where G is the world GDP, N is population, and S is the produced sur-
plus per capita, over the subsistence amount (m) that is minimally nec-
essary to reproduce the population with a zero growth rate in a Malthu-
sian system (thus, S = g – m, where g denotes per capita GDP); a and b 
are parameters. 

Note that the mathematical analysis of the basic model (not pre-
sented here) suggests that up to the 1970s the amount of S (per capita 
surplus produced at the given level of World System development) 
should be proportional, in the long run, to the World System's popula-
tion: S = kN. Our statistical analysis of the available empirical data has 
confirmed this theoretical proportionality (Korotayev, Malkov, and 
Khaltourina 2006a: 49–50). Thus, in the right-hand side of equation (6)  
S can be replaced with kN, and as a result we arrive at the following 
equation:  

2kaN
dt

dN
 . (3)

As we remember, the solution of this type of differential equations is  

)( 0 tt

C
Nt


 ,  (1)

and this produces simply a hyperbolic curve.  
As, according to our model, S can be approximated as kN, its long-

term dynamics can be approximated with the following equation:  

tt

kC
S




0

. 

Thus, the long-term dynamics of the most dynamic component of the world 
GDP, SN, ‘the world surplus product’, can be approximated as follows:  
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 20

2

tt

kC
SN


 . (8)

Of course, this suggests that the long-term world GDP dynamics up to 
the early 1970s must be approximated better by a quadratic hyperbola 
than by a simple one; and, as we could see below (see Fig. 4), this ap-
proximation works very effectively indeed:  

 
Fig. 4. World GDP Dynamics, 1–1973 CE (in billions of 1990 international dol-

lars, PPP): the fit between predictions of a quadratic-hyperbolic model 
and the observed data  

Note: R = .9993, R2 = .9986, p << .0001. The black markers correspond to Maddi-
son's (2001) estimates (Maddison's estimates of the world per capita GDP 
for 1000 CE has been corrected on the basis of [Meliantsev 2004]). The grey 
solid line has been generated by the following equation:  

2)2006(

17749573.1

t
G


 . 

Thus, up to the 1970s the hyperbolic growth of the world population 
was accompanied by the quadratic-hyperbolic growth of the world 
GDP, just as our model suggests. Note that the hyperbolic growth of the 
world population and the quadratic-hyperbolic growth of the world 
GDP are tightly interconnected processes, actually two sides of the same 
coin, two dimensions of one process propelled by the nonlinear second 
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order positive feedback loops between the technological development 
and demographic growth (see Fig. 5).  

 

Fig. 5. Cognitive Scheme of the Generation of Quadratic-Hyperbolic Trend of 
the World Economic Growth by the Nonlinear Second Order Positive 
Feedback between Technological Development and Demographic 
Growth 

We have also demonstrated (Korotayev, Malkov, and Khaltourina 2006a: 
67–80) that the dynamics of the World System population's literacy (l) is 
rather accurately described by the following differential equation:  

where l is the proportion of the population that is literate, S is per capita 
surplus, and a is a constant. In fact, this is a version of the autocatalytic 
model. It has the following sense: the increasing literacy is proportional to 
the fraction of the population that is literate, l (potential teachers), to the 
fraction of the population that is illiterate, (1 – l) (potential pupils), and to 
the amount of per capita surplus S, since it can be used to support educa-
tional programs (in addition to this, S reflects the technological level T 
that implies, among other things, the level of development of educational 
technologies). Note that, from a mathematical point of view, Equation 9 
can be regarded logistic where saturation is reached at literacy level l = 1, 
and S is responsible for the speed with which this level is approached.  

),1( laSl
dt

dl
  (9) 
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It is important to emphasize that with low values of l (which corre-
spond to most part of human history except for the recent decades), the 
increasing rate of the world literacy generated by this model (against 
the background of hyperbolic growth of S) can be approximated rather 
accurately as hyperbolic (see Fig. 6).  
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Fig. 6. World Literacy Dynamics, 1 – 1980 CE (%%): the fit between predictions 

of the hyperbolic model and the observed data  

Note: R = 0.997, R2 = 0.994, p << 0.0001. Black dots correspond to 
UNESCO/World Bank (2014) estimates for the period after 1970, and to Meli-
antsev's (2004) estimates for the earlier period. The grey solid line has been gen-
erated by the following equation:  

2)2040(

3769.264

t
lt 
 . 

The best-fit values of parameters С (3769.264) and t0 (2040) have been calculated 
with the least squares method. 

The overall number of literate people is proportional both to the literacy 
level and to the overall population. As both of these variables experi-
enced a hyperbolic growth until the 1960s/1970s, one has sufficient 
grounds to expect that until recently the overall number of literate peo-
ple in the world (L)9 grew not just hyperbolically, but rather in a quad-
ratic-hyperbolic way (as the world GDP did). Our empirical test has 
confirmed this – the quadratic-hyperbolic model describes the growth of 

                                                           
9 Since literacy appeared, almost all of the Earth's literate population has lived within the 

World System; hence, the literate population of the Earth and the literate population of 
the World System have been almost perfectly synonymous.  
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the literate population of the planet with an extremely good fit indeed 
(see Fig. 7).  

 
Fig. 7. World Literate Population Dynamics, 1–1980 CE (L, millions): the fit be-

tween predictions of the quadratic-hyperbolic model and the observed 
data 

Note: R = 0.9997, R2 = 0.9994, p << 0.0001. The black dots correspond to UNESCO/World 
Bank (2014) estimates for the period since 1970, and to Meliantsev's (2004) estimates 
for the earlier period; we have also taken into account the changes of age structure 
on the basis of UN Population Division (2014) data. The grey solid line has been 
generated by the following equation:  

2)2033(

4958551

t
Lt


 . 

The best-fit values of parameters С (4958551) and t0 (2033) have been calculated with the 
least squares method. 

Similar processes are observed with respect to world urbanization, 
whose macro dynamics appears to be described by the differential equa-
tion:  

)( lim uubSu
dt

du
 , 

where u is the proportion of the population that is urban, S is per capita 
surplus produced with the given level of the World System's techno-
logical development, b is a constant, and ulim is the maximum possible 
proportion of the urban population. Note that this model implies that 
during the blow-up regime of the ‘Malthusian-Kuznetsian’ era, the hy-
perbolic growth of world urbanization must have been accompanied by 
a quadratic-hyperbolic growth of the urban population of the world, 
which is supported by our empirical tests (see Figs 8–9).  
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Fig. 8. World Megaurbanization Dynamics (% of the world population living in 

cities with > 250 thousand inhabitants), 10000 BCE – 1960 CE: the fit be-
tween predictions of the hyperbolic model and empirical estimates  

Note: R = 0.987, R2 = 0.974, p << 0.0001. The black dots correspond to Chandler's (1987) 
estimates, UN Population Division (2014), Modelski (2003), and Gruebler (2006). The grey 
solid line has been generated by the following equation:  

)1990(

403.012

t
ut


 . 

The best-fit values of parameters С (403.012) and t0 (1990) have been calculated with the 
least squares method. For comparison, the best fit (R2) obtained here for the exponential 
model is 0.492. 
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Fig. 9. Dynamics of World Urban Population Living in Cities with more than 

250,000 Inhabitants (mlns), 10000 BCE – 1960 CE: the fit between predic-
tions of the quadratic-hyperbolic model and the observed data  

Note: R = 0.998, R2 = 0.996, p << 0.0001. The black markers correspond to estimates of 
Chandler (1987) and UN Population Division (2014). The grey solid line has been 
generated by the following equation:  

2)2008(

912057.9

t
U t


 . 

The best-fit values of parameters С (912057.9) and t0 (2008) have been calculated with the 
least squares method. For comparison, the best fit (R2) obtained here for the exponential 
model is 0.637. 

Within this context it is hardly surprising that the general macro dy-
namics of the size of the largest settlement within the World System is 
also quadratic-hyperbolic (see Fig. 10).  
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Fig. 10. Dynamics of Size of the Largest Settlement of the World (thousands of 

inhabitants), 10000 BCE – 1950 CE: the fit between predictions of the 
quadratic-hyperbolic model and the observed data  

Note: R = 0.992, R2 = 0.984, p << 0.0001. The black markers correspond to estimates of 
Modelski (2003) and Chandler (1987). The grey solid line has been generated by the 
following equation:  

2max )2040(

573104020618.

t
U t 

 . 

The best-fit values of parameters С (104020618.5) and t0 (2040) have been calculated with 
the least squares method. For comparison, the best fit (R2) obtained here for the exponen-
tial model is 0.747. 

As has been demonstrated by cross-cultural anthropologists (see, e.g., 
Naroll and Divale 1976; Levinson and Malone 1980: 34), for pre-
agrarian, agrarian, and early industrial cultures the size of the largest 
settlement is a rather effective indicator of the general sociocultural 
complexity of a social system. This, of course, suggests that in the ‘Mal-
thusian-Kuznetsian’ era the World System's general sociocultural com-
plexity also increased, in a generally quadratic-hyperbolic way. 

As we have noted in the beginning, the dynamics of marine biodi-
versity is strikingly similar to the population dynamics in China, the 
country with the best-known demographic history.  

The similarity probably stems from the fact that both curves are 
produced by the interference of the same three components (general 



Mathematical Modeling of Big History Phases 204

hyperbolic trend, as well as cyclical and stochastic dynamics). In fact, 
there is a lot of evidence that some aspects of biodiversity dynamics are 
stochastic (Raup et al. 1973; Sepkoski 1994; Markov 2001a; Markov 
2001b; Cornette and Lieberman 2004), while others are periodic (Raup 
and Sepkoski 1984; Rohde and Müller 2005). On cyclical and stochastic 
components of the long-term population dynamics of China (as well as 
other complex agrarian societies) see, e.g., Korotayev and Khaltourina 
2006; Korotayev, Malkov, and Khaltourina 2006b; Chu and Lee 1994; 
Nefedov 2004; Turchin 2003, 2005a, 2005b; Turchin and Korotayev 2006; 
Turchin and Nefedov 2009; Usher 1989; Komlos and Nefedov 2002; 
Grinin, Korotayev and Malkov 2008; Grinin et al. 2009; Grinin 2007c; 
Korotayev 2006; Korotayev, Khaltourina, and Bozhevolnov 2010; Koro-
tayev et al. 2010; van Kessel-Hagesteijn 2009; Abel 1980; Braudel 1973; 
Goldstone 1991; Grinin, Korotayev 2012 etc.).  

In fact, similarly to what we have observed with respect to the 
world population dynamics, even before the start of its intensive mod-
ernization, the population dynamics of China was characterized by a 
pronounced hyperbolic trend – as we can see below (see Figs 11 and 12), 
the hyperbolic model describes traditional Chinese population dynam-
ics much more accurately than either linear or exponential models do:  

 
Fig. 11. Population Dynamics of China (million people), 57–1851 CE: fit with 

linear and exponential models  

Note: based on calculations in Korotayev, Malkov, and Khaltourina 2006b: 47–88.  
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Fig. 12. Population Dynamics of China (million people), 57–1851 CE: fit with  

a hyperbolic model  

The hyperbolic model turns out to describe mathematically the popula-
tion dynamics of China in an especially accurate way with respect to the 
modern period (see Fig. 13). 

 
Fig. 13. Population Dynamics of China (million people), 57–2003 CE: fit with  

a hyperbolic model 
Note: based on calculations in Korotayev, Malkov, and Khaltourina 2006b: 47–88.  
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In a rather similar way the hyperbolic model turns out to describe the 
marine biodiversity (measured by number of genera) through the Phan-
erozoic much more accurately than the exponential one (see Fig. 14): 

 
Fig. 14. Global Change in Marine Biodiversity (Number of Genera, N) through 

Phanerozoic 

Note: based on empirical data surveyed in Markov and Korotayev (2007). 

When measured in terms of species number the fit between the empiri-
cally observed marine biodiversity dynamics and the hyperbolic model 
becomes even better (see Fig. 15):  

 
Fig. 15. Global Change in Marine Biodiversity (Number of Species, N) through 

Phanerozoic  

Note: based on empirical data surveyed in Markov and Korotayev 2007b. 
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The hyperbolic model describes the continental biodiversity in an espe-
cially accurate way (see Fig. 16).  

 
Fig. 16. Global Change in Continental Biodiversity (Number of Genera, N) 

through Phanerozoic 

Note: based on empirical data surveyed in Markov and Korotayev 2007b. 

However, the highest fit between the hyperbolic model and the empirical 
data is observed when the hyperbolic model is used to describe the dy-
namics of total (marine and continental) global biodiversity (see Fig. 17).  

 
Fig. 17. Global Change in Total (Marine + Continental) Biodiversity (Number of 

Genera, N) through Phanerozoic  

Note: based on empirical data surveyed in Markov and Korotayev 2007b. 
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As we see, the hyperbolic dynamics is most prominent when both ma-
rine and continental biotas are considered together. This fact can be in-
terpreted as a proof of the integrated nature of the biosphere. 

But why throughout the Phanerozoic did the global biodiversity 
tend to follow the hyperbolic trend (similarly to what we observed 
within social World System in general and China in particular)?  

As we have noted above, in macrosociological models, the hyper-
bolic pattern of the world population growth arises from a non-linear 
second-order positive feedback (more or less identical with the mecha-
nism of collective learning) between the demographic growth and tech-
nological development (more people – more potential inventors – faster 
technological growth – the carrying capacity of the Earth grows faster – 
faster population growth – more people – more potential inventors, and 
so on). 

Based on the analogy with macrosociological models and diverse 
paleontological data, we suggest that the hyperbolic character of biodi-
versity growth can be similarly accounted for by a non-linear second-
order positive feedback10 between the diversity growth and community 
structure complexity (more genera – higher alpha diversity – the com-
munities become more stable and ‘buffered’– average life span of genera 
grows; extinction rate decreases – faster diversity growth – more gen-
era – higher alpha diversity, and so on). 

The growth of genus richness through the Phanerozoic was mainly 
due to the increase of average longevity of genera and gradual accumu-
lation of long-lived (stable) genera in the biota. This pattern reveals it-
self in the decrease of extinction rate. Interestingly, in both biota and 
humanity, growth was facilitated by the decrease in mortality rather 
than by the increase in birth rate. The longevity of newly arising genera 
was growing in a stepwise manner. The most short-lived genera ap-
peared during the Cambrian; more long-lived genera appeared in Or-
dovician to Permian; the next two stages correspond to the Mesozoic 
and Cenozoic (Markov 2001a, 2002).We suggest that diversity growth 
can facilitate the increase in genus longevity via the progressive step-
wise changes in the structure of communities. 

Most authors agree that there were three major biotic changes that 
resulted in fundamental reorganization of community structure during 
the Phanerozoic: Ordovician radiation, end-Permian extinction, and 
end-Cretaceous extinction (Bambach 1977; Sepkoski et al. 1981; Sepkoski 
1988, 1992; Markov 2001a; Bambach et al. 2002). Generally, after each 

                                                           
10 One wonders if it cannot be regarded as a (rather imperfect) analogue of the collective 

learning mechanism that plays such an important role within the social macroevolution.  
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major crisis the communities became more complex, diverse and stable. 
The stepwise increase of alpha diversity (average number of species or 
genera in a community) through the Phanerozoic was demonstrated by 
Bambach (1977) and Sepkoski (1988). Although Powell and Kowalewski 
(2002) argued that the observed increase in alpha diversity might be an 
artifact caused by several specific biases that influenced the taxonomic 
richness of different parts of the fossil record, there is evidence that 
these biases largely compensated each other, so that the observed in-
crease in alpha diversity was probably underestimated rather than 
overestimated (Bush and Bambach 2004).  

Another important symptom of progressive development of com-
munities is the increase in evenness of distribution of species (or genus) 
abundances. In the primitive, pioneer or suppressed communities, this 
distribution is strongly uneven (community is overwhelmingly domi-
nated by a few very abundant species). In more advanced, climax or 
flourishing communities, this distribution is more even (Magurran 
1988). The former type of community is generally more vulnerable. 
Evenness of distribution of species richness in communities increased 
substantially during the Phanerozoic (Powell and Kowalewski 2002; 
Bush and Bambach 2004). Most probably there was also an increase in 
habitat utilization, total biomass and rate of trophic flow in biota 
through the Phanerozoic (Powell and Kowalewski 2002).  

The more complex the community, the more stable it is due to the 
development of effective interspecies interactions and homeostatic 
mechanisms based on the negative feedback principle. In a complex 
community, when the abundance of a species decreases, many factors 
arise that facilitate its recovery (e.g., there will be more food and fewer 
predators). Even if a species becomes extinct, its vacant niche may ‘re-
cruit’ another species, most probably a related one that may acquire 
morphological similarity with its predecessor and thus, the taxonomists 
will assign it to the same genus. So a complex community can facilitate 
the stability (and longevity) of its components, such as niches, taxa and 
morphotypes. This effect reveals itself in the phenomenon of ‘coordi-
nated stasis’: the fossil record shows many examples of persistence of 
particular communities for many million years while the rates of extinc-
tion and taxonomic turnover are minimized (Brett et al. 1996, 2007).  

Selective extinction leads to accumulation of ‘extinction-tolerant’ 
taxa in the biota (Sepkoski 1991b). Although there is evidence that mass 
extinctions can be non-selective in some aspects (Jablonski 2005), they 
are obviously highly selective with respect to the ability of taxa to en-
dure unpredictable environmental changes. This can be seen, for in-
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stance, from the selectivity of the end-Cretaceous mass extinction with 
respect to the time of the first occurrence of genera. In younger cohorts 
the extinction level was higher compared to the older cohorts (see 
Markov and Korotayev 2007a: Fig. 2). The same pattern can be observed 
during the periods of ‘background’ extinction as well (Markov 2000). 
This means that genera differ in their ability to survive the extinction 
events, and that in the course of time the extinction-tolerant genera ac-
cumulate in each cohort. Thus, taxa generally become more stable and 
long-lived in the course of evolution, apart from the effects of communi-
ties. The communities composed of more stable taxa would be, in turn, 
more stable themselves, thus creating a positive feedback.  

The stepwise change of dominant taxa plays a major role in biotic 
evolution. This pattern is maintained not only by the selectivity of ex-
tinction (discussed above), but also by the selectivity of the recovery 
after crises (Bambach et al. 2002). The taxonomic structure of the Phanero-
zoic biota was changing in a stepwise way, as demonstrated by the concept 
of three sequential ‘evolutionary faunas’ (Sepkoski 1992). There were also 
stepwise changes in the proportion of major groups of animals with differ-
ent ecological and physiological parameters. There was a stepwise growth 
in proportion of motile genera compared to non-motile; ‘physiologically 
buffered’ genera compared to ‘unbuffered’, and predators compared to 
prey (Bambach et al. 2002). All these trends should have facilitated the 
stability of communities (e.g., diversification of predators implies that 
they become more specialized; a specialized predator regulates its prey's 
abundance more effectively than a non-specialized predator). 

There is also another possible mechanism of the second-order posi-
tive feedback between the diversity and its growth rate. Recent research 
has demonstrated a shift in typical relative-abundance distributions in 
paleocommunities after the Paleozoic (Wagner et al. 2006). One possible 
interpretation of this shift is that the community structure and the inter-
actions between species in the communities became more complex.  
In the post-Paleozoic communities, new species probably increase eco-
logical space more efficiently, either by facilitating opportunities for ad-
ditional species or by niche construction (Wagner et al. 2006; Solé et al. 
2002; Laland et al. 1999). This possibility makes the mechanisms under-
lying the hyperbolic growth of biodiversity and human population even 
more similar, because the total ecological space of the biota is analogous 
to the ‘carrying capacity of the Earth’ in demography. As far as new 
species can increase ecological space and facilitate opportunities for ad-
ditional species entering the community, they are analogous to the ‘in-
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ventors’ of the demographic models whose inventions increase the car-
rying capacity of the Earth. 

Exponential and logistic models of biodiversity imply several possi-
ble ways in which the rates of origination and extinction may change 
through time (Sepkoski 1991a). For instance, exponential growth can be 
derived from constant per-taxon extinction and origination rates the 
latter being higher than the former. However, actual paleontological 
data suggest that origination and extinction rates did not follow any 
distinct trend through the Phanerozoic, and their changes over time 
look very much like chaotic fluctuations (Cornette and Lieberman 2004). 
Therefore, it is more difficult to find a simple mathematical approxima-
tion for origination and extinction rates than for the total diversity. In 
fact, the only critical requirement of the exponential model is that the 
difference between the origination and extinction through time should 
be proportional to the current diversity level:  

(No −Ne)/Δt ≈ kN,                (11) 
where No and Ne are the numbers of genera with, respectively, first and 
last occurrences within the time interval Δt, and N is mean diversity 
level in the interval. The same is true for the hyperbolic model. It does 
not predict the exact way in which origination and extinction should 
change, but it does predict that their difference should be roughly pro-
portional to the square of the current diversity level:  

(No −Ne)/Δt ≈ kN2.                (12)  
In demographic models discussed above, the hyperbolic growth of the 
world population was not decomposed into separate trends of birth and 
death rates. The main driving force of this growth is presumably the 
increase of the Earth's carrying capacity and the way this capacity is 
realized – either by decreasing death rate, or by increasing birth rate, or 
both – depends upon many factors and may vary from time to time.  

The same is probably true for biodiversity. The overall shape of the 
diversity curve depends mostly on the differences in the mean rates of 
diversity growth in the Paleozoic (low), Mesozoic (moderate), and Ce-
nozoic (high). The Mesozoic increase was mainly due to lower extinc-
tion rate (compared to the Paleozoic), while the Cenozoic increase was 
largely due to higher origination rate (compared to the Mesozoic) (see 
Markov and Korotayev 2007a: 316, Figs 3a, 3b). This probably means 
that the acceleration of diversity growth during the last two eras was 
driven by different mechanisms of positive feedback between diversity 
and its growth rate. Generally, the increment rate ((No −Ne)/Δt) was 
changing in a more regular way than the origination rate No/Δt and 
extinction rate Ne/Δt. The large-scale changes in the increment rate cor-
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relate better with N2 than with N (Ibid.: figs 3c and 3d), thus supporting 
the hyperbolic rather than the exponential model. 

Conclusion  

In macrosociological models the hyperbolic pattern of the world popu-
lation growth arises from a non-linear second-order positive feedback 
between the demographic growth and technological development 
(more people – more potential inventors – faster technological growth – 
the carrying capacity of the Earth grows faster – faster population 
growth – more people – more potential inventors, and so on, which is 
more or less identical with the working of the collective learning 
mechanism). Based on the analogy with macrosociological models and 
diverse paleontological data, we suggest that the hyperbolic character of 
biodiversity growth can be similarly accounted for by a non-linear sec-
ond-order positive feedback between the diversity growth and commu-
nity structure complexity (which suggests the presence within the bio-
sphere of a certain analogue of the collective learning mechanism). The 
feedback can work via two parallel mechanisms: 1) decreasing extinc-
tion rate (more taxa – higher is the alpha diversity, or mean number of 
taxa in a community – communities become more complex and stable – 
extinction rate decreases – more taxa, and so on), and 2) increasing 
origination rate (new taxa facilitate niche construction; newly formed 
niches can be occupied by the next ‘generation’ of taxa). The latter 
makes the mechanisms underlying the hyperbolic growth of biodiver-
sity and human population even more similar, because the total eco-
space of the biota is analogous to the ‘carrying capacity of the Earth’ in 
demography. As far as new species can increase ecospace and facilitate 
opportunities for additional species entering the community, they are 
analogous to the ‘inventors’ in the demographic models whose inven-
tions increase the carrying capacity of the Earth. The hyperbolic growth 
of the Phanerozoic biodiversity suggests that ‘cooperative’ interactions 
between taxa can play an important role in evolution, along with gener-
ally accepted competitive interactions. Due to this ‘cooperation’ (~ ‘col-
lective learning’?), the evolution of biodiversity acquires some features 
of a self-accelerating process. The same naturally refers to coopera-
tion/collective learning as regards the global social evolution. The dis-
cussed above suggests that we can trace rather similar macropatterns 
within both the biological and social phases of Big History that produce 
rather similar curves in diagrams and that can be described in rather 
accurate way with rather simple mathematical models.  
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