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Abstract 
In this paper we apply wavelet analysis to the detection of long waves in 
wholesale price index for France, the UK and the US because wavelets can 
easily overcome most of the methodological difficulties experienced in previ-
ous methods.  

The advantages of using wavelet multiresolution decomposition analysis 
for the analysis of long waves studied by Kondratieff are manifold: 1) long 
wave components are easily obtainable through multiresolution decomposition 
analysis; 2) no preliminary correction is needed; and 3) they can handily detect 
cycles that are not easily visible in trending series (as it is the case of the 
wholesale price index in the post-WWII period). 

Comparisons with the chronology in the literature on long wave cycles for 
prices and with recent results for world GDP growth rates indicate that wave-
let analysis can provide a reliable and useful statistical methodology in order 
to analyze the dynamics of long waves in historical time series.  

Keywords: long wave cycles, wavelet analysis, wholesale prices, world GDP. 

1. Introduction 
After almost a century from its publication, Kondratieff's (1926) research on 
50-year long cyclical movements in economic activity remains a fascinating, 
but still highly controversial theory (Bernard et al. 2014). Both the very pres-
ence and the driving forces and mechanisms generating such long waves are a 
matter of dispute. The very existence of long waves is questioned on the basis 
that available data are inadequate, since there are too few observations for rig-
orous test by means of spectral analysis. As to the working mechanism of the 
economy, the main dispute is over the adequacy of endogenous models based 
on intermittent clusters of technological innovations generated in the lead 
economy (hegemonic country) and diffused unevenly outwards to other econ-



Wavelet Estimation of Kondratieff Waves 100

omies through Schumpeter's (1939) ‘creative destruction’ process, with respect 
to exogenous models driven by external impulses such as wars (Goldstein 
1988).1 

Still more controversial is the choice of the appropriate methodology for 
identification of long waves. The methods initially used for detecting long 
waves in economic variables aimed at isolating major fluctuations in the devia-
tions of a variable around its trend through a combination of detrending proce-
dures and smoothing techniques (Kondratieff 1926). These methods have been 
criticized for adopting ad-hoc solutions for trend estimation and moving aver-
age length, as well as for implying that trends and the fluctuations in the devia-
tions from trends do not interact and influence each other (trend-cycle sepa-
ration). In addition, statistical artifacts and significant errors in long waves de-
tection can be created by, respectively, detrending methodologies and faulty 
trend estimates (see Freeman and Louçã 2001; Zarnovitz and Ozyildirim 2002). 
The similarity between detection of long waves and extraction of growth cy-
cles2 has favoured the application of spectral methods to long wave analysis.3 

Although the spectral-theory approach seems to be a particularly appropri-
ate method for long wave detection, application of spectral analysis has several 
drawbacks: the observed series need to be stationary in order to be analyzed 
with the tools of spectral analysis and, above all, long waves revealed by spec-
tral analysis are based on the assumption of regular fixed periodicities. Both 
requirements are particularly troublesome as the dataset used in long waves 
analysis includes two hundred years of data influenced by several war episodes, 
especially the two WWs. In this paper we propose the application of a different 
statistical method for detecting long waves in economic variables that can easi-
ly overcome most of the methodological difficulties experienced in previous 
methods: wavelet analysis. Wavelets have ability to handle a variety of non-
stationary and complex signals because their projections are local, rather than 
global. Moreover, the non-parametric nature of the multiresolution decompo-
sition analysis is able to capture the irregular nature of the period and ampli-
tude of economic cycles and captures cyclical processes with different dura-
tions. Specifically, we apply the multiresolution and energy decomposition 
analysis to price series for France, the UK and the US in order to be able to 
compare our findings with the evidence provided by early long wave authors 

                                                           
1 Other authors have related long wave generation to employment and wages dynamics (Freeman  

et al. 1982), scarcity of resources (Rostow 1978) and class struggle (Mandel 1980). 
2 Growth cycles definition follows from the modern approach to business cycles analysis (Lucas 

1977), where business cycles are defined as fluctuations around a (stochastic) trend. 
3 The band-pass filtering approach decomposes series into trend, cycle, and irregular components 

corresponding respectively to the low, intermediate, and high frequency parts of the spectrum 
(Stock and Watson 2000). Thus, a band pass filter can identify the long wave component by fil-
tering out all fluctuations outside the frequency range of interest. 
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on long waves patterns in prices. Moreover, we analyze whether long waves 
are a general phenomena by looking at cycles in economic activity for the 
world economy as a whole. Anticipating our results one can say that the long 
waves in prices and in world economic activity detected using wavelet analy-
sis resemble the long wave chronologies reported in the literature by various 
authors. All in all, we believe that wavelet analysis can be considered as a 
reliable and useful statistical methodology for analyzing long wave patterns 
in economic variables. 

The paper is organized as follows: Section 2 describes the main differences 
between spectral and wavelet analysis and briefly presents the main features 
and properties of wavelet analysis in comparison. Then, in Section 3 we apply 
the multiresolution and energy decomposition analysis to price series for 
France, the UK and the US so as to have long-wave patterns in prices compara-
ble with the evidence provided by early long wave authors. Moreover, we ana-
lyze whether long waves are a general phenomenon by looking at cycles in 
economic activity for the world economy as a whole. Section 4 concludes the 
paper. 

2. An Alternative Methodology for Long Waves  
Detection: Wavelet Analysis 

The methodology for identification of long waves in aggregate economic time 
series is still a largely debated question in the literature on long-run patterns. 
Starting from Kondratieff's methodology4 several alternative approaches have 
been used for long waves detection: moving average smoothing techniques, 
trend deviation, and phase period analysis (Goldstein 1988). 

Each methodology used for identifying long wave cycles in economic time 
series depend on data pre-processing since data transformation is needed for 
features extraction. 

However, the extraction of the cyclical component of interest rely on a 
number of specific ad hoc assumptions, such as the pre-definition of historical 
phase periods or the specification of a particular form for the secular trend (lin-
ear, quadratic, exponential, etc.) in estimating the trend component. 

More recently, the long wave hypothesis has been tested by means of spec-
tral analysis because of its ability to simultaneously break down any time series 
into a set of cyclical components having different frequencies (e.g., Kuczynski 
1978; Van Ewijk 1982; Bieshaar and Kleinknecht 1984; Metz 1992, 2011; 
Reijnders 1990, 1992, 2009; Diebolt and Doliger 2006, 2008; Korotayev and 
Tsirel 2010). 

                                                           
4 In Kondratieff (1926) after long-term trend fitting, long waves are extracted through a nine years 

moving average on the residuals to eliminate the effects of shorter business cycles. 
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2.1 Spectral vs Wavelet Analysis 
Spectral analysis provides a frequency domain representation of a signal (or a func-
tion) where the same information as the original function is approximated by 
the sum of periodical functions with fixed frequencies, i.e. sines and cosines. 
The signal can then be analyzed for its frequency content because the Fourier 
coefficients of the transformed function represent the contribution of each sine 
and cosine function at each frequency.5 

The simultaneous estimation of several cyclical components may be also 
pursued using wavelet analysis.6 Like spectral analysis, wavelet analysis allows 
to decompose any signal into a set of time scale components, each reflecting 
the evolution through time of the signal at a particular range of frequencies and 
to study the dynamics of each component separately, but with a resolution 
matched to its scale since the wavelet basis function is dilated (or compressed) 
according to a scale parameter to extract different frequency information. Moreo-
ver, the transformation to the frequency domain does not preserve the time infor-
mation so that it is impossible to determine when a particular event took place,  
a feature that may be important in the analysis of economic relationships. In other 
words, it has only frequency resolution but not time resolution.  

Both transforms can be viewed as a rotation in function space to a different 
domain which for Fourier Transform contains basis functions that are sines and 
cosines, whereas for the wavelet transform, this new domain contains more 
complex basis functions called wavelets (see Strang 1993). The basis functions 
used by the Fourier transform (upper and middle panel) and the wavelet trans-
form (lower panel) are shown in Fig. 1. 

 

Fig. 1. Caption – Sines (top), cosines (middle) and wavelet (bottom) 
basis functions 

                                                           
5 The contribution of each individual frequency (periodical function) to the total variance of the 

(stationary) time series under consideration can be obtained by estimating the sample spectrum 
through the application of the Fourier transform. 

6 Although widely used in many areas of applied sciences (i.e. astronomy, acoustics, signal and 
image processing, geophysics, climatology, etc.), wavelet applications have been only recently 
used in such fields as economics and finance after the papers by Ramsey and his co-authors (see 
Ramsey and Zhang 1995, 1996; Ramsey and Lampart 1998a, 1998b). 
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Fig. 1 shows that wavelets are mathematical functions that transform the data 
into a mathematically equivalent representation by using a basis function that is 
similar to a sine and cosine function in that it also oscillates around zero, but 
differ because, as wavelets are constructed over finite intervals, they are well-
localized both in the time and the frequency domain. Since the Fourier trans-
form uses a linear combination of basis functions ranging over ± infinity, all 
projections in Fourier analysis are global, and thus a single disturbance affects 
all frequencies for the entire length of the series. Thus, if the signal is a non-
periodic one, the summation of the periodic functions, sine and cosine, does not 
accurately represent the signal.  

Such a feature restricts the usefulness of the Fourier transform to the analy-
sis of stationary processes, whereas most economic and financial time series 
display frequency behavior that changes over time, i.e. they are nonstationary 
(Ramsey and Zhang 1996). 

Hence, although spectral analysis is in principle an appropriate methodolo-
gy for long wave analysis because of its ability to simultaneously estimate the 
contribution of several cyclical components, in practice its application is greatly 
limited by the requirement that the series is detrended in order to achieve sta-
tionarity. But then one is back in the realm of detrending methods along with 
their problems of arbitrariness in the estimation and elimination of the trend 
component.7 

By contrast wavelet analysis may overcome the main problems evidenced 
by Fourier analysis since wavelets are compactly supported, as are all projec-
tions of a signal onto the wavelet space are essentially local, not global, and 
thus need not be homogeneous over time.  

Being performed locally, the wavelet transform allows the analysis of se-
ries that by their nature, as it is for long historical time series data, are likely to 
exhibit short-lived transient components like abrupt changes, jumps, and vola-
tility clustering, typical of war episodes or crisis episodes. 

Unlike spectral analysis and related statistical techniques, wavelet analysis 
considers nonstationarity as an intrinsic property of the data rather than a prob-
lem to be solved by pre-processing the data.  

Indeed, much of the usefulness of wavelet analysis has to do with its flexi-
bility to handle a variety of complex and nonstationary signals so that the data 
need neither be detrended nor corrections for war years are needed anymore. 
Corrections for war periods (war data are influenced by pre-war armament 
booms, war economy and post-war reconstruction booms around WWII and to 
a lesser extent WWI) are generally applied to original data by interpolating 
series for the war years (Metz 1992) or a priori elimination of the impact of the 
war periods (Korotayev and Tsirel 2010) on the assumption that such shocks 
can be seen as disturbances in the normal structure of data. 

                                                           
7 Detrending procedures are not neutral with respect to the results relating to the existence of cy-

cles: ‘the smoothing techniques may create artefacts’ (Freeman and Louçã 2001: 99). 
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Hence, with wavelet analysis we can avoid the practice of studying history 
by erasing part of the history (Freeman and Louçã 2001).    

Finally, long waves revealed by spectral analysis are based on the assump-
tion of regular fixed periodicities (van Duijn 1983), but if the signal is a non-
periodic one, the summation of the periodic functions like sines and cosines, 
does not accurately represent the signal.  

By contrast wavelet analysis breaks down any time series into the sum of 
nonperiodic oscillatory components (quasi-periodic functions) whose irregular 
pattern is likely to resemble cyclical movements better than any approach re-
quiring fixed periodicities. 

All in all, wavelet analysis, as well as spectral analysis, is particularly well 
suited for detecting cycles, but unlike spectral methods has the ability to detect 
cyclical components that are spaced irregularly in time and can be applied to 
non-stationary time series. 

2.2 Wavelet Analysis in Brief 
In this subsection we briefly introduce the essential characteristics of wavelet 
analysis. Wavelets, their generation and their potential usefulness are discussed 
in intuitive terms in Ramsey (2010, 2014). A more technical exposition with 
many examples of the use of wavelets in a variety of fields is provided by Per-
cival and Walden (2000), while an excellent introduction to wavelet analysis 
along with many interesting economic and financial examples is given in Gen-
cay, Selcuk and Whitcher (2002) and Crowley (2007). 

The wavelet transform maps a function f(t) from its original representation 
in the time domain into an alternative representation in the time-scale domain 
w(t, j) applying the transformation w(t, j) = ψ(.)f(t), where t is the time index, 
j – the scale (i.e. a specific frequency band) and ψ(.) – the wavelet filter. There 
are two basis wavelet filter functions: the father and the mother wavelets, φ and 
ψ, respectively. The first integrates to 1 and reconstructs the smooth and low 
frequency parts of a signal, whereas the latter integrates to zero and describes 
the detailed and high-frequency parts of a signal. 

The formal definition of the father wavelet is the function 

φ J,k = 2
-(J/2) 

φ((t – 2
J 

k)/(2
J
))    (1)

 

defined as non-zero over a finite time length support that corresponds to given 
mother wavelet 

ψ j,k = 2
-(j/2)

 ψ((t – 2
j 
k)/(2

j
))   (2) 

with j=1,.....,J in a J-level wavelets decomposition. The mother wavelet, as said 
above, plays a role similar to sines and cosines in the Fourier decomposition.  
It serves as a basis function to construct a set of wavelets, where each element 
in the wavelet set is obtained by compressing or dilating and shifting the moth-
er wavelet, in order to approximate a signal. 
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For a discrete signal or function f1, f2, ...., fn, the wavelet representation of 
the signal or function f(t) in L2(R) can be given by 
f(t) = ∑k sJ,kΦJ,k(t) + ∑k dJ,k ΨJ,k(t) + … + ∑k dj,k Ψj,k(t) + … + ∑k d1,k Ψ1,k(t),  (3) 
where J is the number of multiresolution components or scales, and k ranges 
from 1 to the number of coefficients in the specified components. The coeffi-
cients djk and sJk of the wavelet series approximations in (3) are the details and 
smooth wavelet transform coefficients representing, respectively, the projec-
tions of the time series onto the basic functions generated by the chosen family 
of wavelets, that is 

dj,k = ∫ ψj,k f(t)dt 
sJ,k = ∫ φJ,k f(t)dt 

for j = 1, 2, ...., J. The smooth coefficients sJk mainly capture the underlying 
smooth behavior of the data at the coarsest scale, whereas details coefficients 
d1k, …, djk, …, dJk, representing deviations from the smooth behaviour, provide 
progressively finer scale deviations.8 

The multiresolution decomposition of the original signal f(t) is given by the 
following expression 

f(t) =SJ + DJ + DJ–1 + ... + Dj + ... +D1 ,  (4) 
where SJ = ∑k sJ,kΦJ,k(t), and Dj = ∑k dJ,k ΨJ,k(t) with j=1,....,J. The sequence of 
terms SJ, DJ, ...Dj, ..., D1 in (4) represent a set of components that provide rep-
resentations of the signal at the different resolution levels 1 to J. The term SJ 
represents the smooth long-term component of the signal and the detail compo-
nents Dj provide the increments at each individual scale, or resolution, level. 
Each signal component has a frequency domain interpretation. As the wavelet 
filter belongs to high-pass filter with passband given by the frequency interval 

[1/2
j+1

, 1/2
j
] for scales 1 < j < J, inverting the frequency range to produce a pe-

riod of time we have that wavelet coefficients associated to scale j = 2 
j–1

 are 

associated to periods [2
j
, 2

j+1
]. 

The frequency domain interpretation of each signal component, in term of 
periods, is presented in Table 1 for a J = 5 level decomposition analysis. 

Table 1. Frequency interpretation in periods for a J=5 level decompo-
sition  

Scale level J Detail level Dj Frequency resolution (years) 
1 D1 2–4
2 D2 4–8
3 D3 8–16
4 D4 16–32
5 D5 32–64
6 S5 > 64

                                                           
8 Each of the sets of coefficients sJ, dJ, dJ-1, ..., d1 is called a crystal in wavelet terminology. 
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In addition to decompose a time series into several components each associated 
with a different resolution level, wavelets allow for an alternative representa-
tion of the variability of stochastic  processes on a scale-by-scale basis through 
the energy decomposition analysis.  

Let E be the total energy of a signal f(t) for j = 1, ..., J we have 

E = EJ + ∑ j=1
J
 
Ej , 

where 

EJ = ∑k=1
n/2J s2

J,k 

EJ = ∑k=1
n/2j d2

J,k 

are the energy of the scaling and wavelet coefficients, respectively. The expres-
sion shows that the total signal energy is the sum of the jth level approximation 
signal and sum of all detail level signals 1st detail to jth detail. Indeed, since 
wavelet transform is an energy preserving transformation, the sum of the ener-
gies of the wavelet and the scaling coefficients is equal to the total energy of 
the data. In particular, by performing the energy decomposition analysis we can 
decompose the total energy of a series into the energy associated to each fre-
quency component so as to detect which cyclical components contribute sub-
stantially more to the overall energy of the process relative to the others. 

3. Nonparametric Estimation of Long Waves Using 
Wavelets 

3.1 Long Waves in Prices 
In this section we explore the usefulness of wavelet time scale decomposition 
analysis for the detection of long wave economic cycles similar to those dis-
covered by Kondratieff in his original studies. Specifically, we investigate the 
presence of long waves in prices by examining the patterns in the wholesale 
price index for France, the UK and the US, the leading economies in the 18th, 
19th and 20th centuries, respectively, because these price series have provided 
the strongest supporting evidence for the long wave hypothesis by early  
20th century long wave investigators (e.g., van Gelderen 1913; Kondratieff 
1926, 1935; de Wolff 1924; Schumpeter 1939). 

Price data have been largely examined in the literature on long waves be-
cause prices have been for a long time the only economic data available and 
consistently measured, whereas output variables have been reconstructed by 
economic historians relatively recently and mostly back to the mid-19th century. 
Moreover, since annual data on the wholesale price index go back to the late  
18th century, they allow using the longest possible time span as well as a num-
ber of observations higher than any corresponding international dataset on GDP 
whose data are only available from 1870 onwards only.  
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Finally, by using price indices data we can have direct evidence on the hy-
pothesized changes in the long wave price behavior in the post-WWII period.  

By using the discrete wavelet transform (DWT) we are able to decompose 
each price index into its different time scale components, each corresponding to 
a particular frequency band, and then to isolate the time scale component of 
interest.  

We apply the maximal overlap discrete wavelet transform (MODWT) be-
cause the DWT has two main drawbacks: 1) the dyadic length requirement, i.e. 
a sample size divisible by 2J; 2) the wavelet and scaling coefficients are not 
shift invariant, and, finally, the MODWT produces the same number of wavelet 
and scaling coefficients at each decomposition level as it does not use 
downsampling by two. In order to perform a wavelet analysis of a time series, a 
number of decisions must be made: which family of wavelet filters to use, what 
type of wavelet transform to apply, and how boundary conditions at the end of 
the series are to be handled. There are several families of wavelet filters availa-
ble, such as Haar (discrete), symmlets and coiflets (symmetric), daublets 
(asymmetric), etc., differing by the characteristics of the transfer function of the 
filter and by filter lengths. Daubechies (1992) has developed a family of com-
pactly supported wavelet filters of various lengths, the least asymmetric family 
of wavelet filters (LA), which is particularly useful in wavelet analysis of time 
series because it allows the most accurate alignment in time between wavelet 
coefficients at various scales and the original time series. With reflecting 
boundary conditions the original signal is reflected about its end point to pro-
duce a series of length 2N which has the same mean and variance as the origi-
nal signal. 

We apply the maximal overlap discrete wavelet transform (MODWT) to 
annual observations from 1791 to 2012 of the wholesale price indexes for 
France, the US and the UK , normalized to 100 for 1914, using the Daubechies 
least asymmetric (LA) wavelet filter of length L=8 based on eight non-zero 
coefficients (Daubechies 1992), with reflecting boundary conditions. The ap-
plication of the MODWT with a number of levels (scales) J=5 to annual time 
series produces five wavelet details vectors D1, D2, D3, D4 and D5 capturing 
oscillations with a period of 2–4, 4–8, 8–16, 16–32 and 32–64 years, respec-
tively.  

Given Kondratieff's definition of long wave cycles, that is cycles with 
a characteristic period from 40 to 60 years and with an average length of about 
50 years (Kondratieff 1926, 1935), from the frequency domain interpretation of 
signal components provided in Table 1 we can identify which wavelet detail 
component closely corresponds to Kondratieff-type long wave cycles. 

The D5 detail component can provide an estimate of Kondratieff domain 
since its frequency range is between 32 and 64 years and its average cycle 
length is around 48 years. 
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Moreover, since no assumption has been made on the underlying nature of 
the signal and a criterion similar to a locally adaptive bandwidth has been 
adopted, the wavelet detail component D5 represents a nonparametric estima-
tion of a long cycle with average length equal to 48 years. 

Since the MODWT is an energy (variance) preserving transform9 (Percival 
and Mofjeld 1997), it allows us to separate the contribution of energy in the 
price series due to changes at each time scale. 

Specifically, the energy decomposition analysis allows us to separate the 
total energy of a series into the energy associated to each frequency component, 
and to detect the relative contribution of each cyclical component. 

In particular, our specific interest is in measuring the relative importance of 
the component corresponding to the long waves as to all other cyclical compo-
nents. 

Fig. 2 shows three crystals energy related bar plots of the wholesale price 
series (net of the S5 component) for France, the UK and the US from the energy 
decomposition analysis. Since for each wholesale price series most (or almost 
all) of the energy is concentrated in its large-scale features, with the small-scale 
features accounting for a very small fraction of the total variability, we apply 
the energy decomposition analysis to the raw series net of its long term smooth 
component S5 in order to remove the overwhelming effects of S5 components in 
the analysis. The result that longer cycle frequencies appear to carry most vari-
ability displays a striking similarity with the finding that Granger (1961) termed 
as ‘the typical spectral shape of an economic variable’ that shows how most of 
economic variables display a spectrum that exhibit a smooth declining shape 
with considerable power at very low frequencies.  

The energy plots illustrate the distribution of the energy in the original sig-
nal at different scales and provide a measure of the relative importance of the 
various cycle types present in the price series. 

There emerge two main findings: first, the residual energy at each scale 
level tends to decrease with the scale level, and second, most of this energy is 
concentrated at the detail level corresponding to the long wave component, D5. 
This last result holds for the UK and the US, whereas in the case of France the 
level of energy at the D4 level is slightly higher than that at the D5 level. 

On the whole, even if the total residual energy is modest, given the domi-
nance of the S5 components, we can conclude that the component correspond-
ing to long waves provides the most significant contribution in terms of energy 
coefficients, especially in comparison to business cycles cyclical components. 

                                                           
9 The variance of the time series is preserved in the variance of the coefficients from the MODWT, 

i.e. var (Xt) = Σj=1
J var(dj,t) + var(sJ,t). 
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Fig. 2. Сaption – Energy decomposition analysis of wholesale price 

series (net of the S5 component) for France (left), the UK 
(center) and the US (right) 

 
The D5 components of the wholesale price index for France, the UK and the US 
WPID5, are shown in Fig. 3, along with their corresponding raw series, WPI. 
Kondratieff's (1926) original chronology is reported using grey-shaded areas. 

Five long waves in prices are clearly detected between 1790 and 2012 by 
means of wavelet multiresolution decomposition analysis (four and a half long 
waves are clearly detectable for France since the sample starting in 1803 cap-
tures the downswing phase of the first long wave).  

Several features are worth mentioning from the visual inspection of the 
long waves presented in Fig. 3.  

The main feature emerging from the visual inspection of long waves prices 
for all countries is the absence of regularities in terms of length and amplitude 
of such long wave patterns. 

Indeed, these long wave patterns in wholesale price indexes are represented 
as an alternating sequence of historical phases of variable length.  

Moreover, these long cycle movements in prices identified through wavelet 
multiresolution decomposition analysis are evident not only when the raw se-
ries is trendless, as it is in the pre-WWII period, but also after WWII when the 
trending behavior of the price level makes such long waves in price indexes 
hard to be detected. 
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Fig. 3. Сaption – France (top), UK (middle) and US (bottom) whole-

sale price index along with its D5 corresponding wavelet detail 
vector (smooth lines). Kondratieff's (1926) original chronolo-
gy is indicated with grey-shaded areas. 
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A question highly debated in the literature is whether the wave pattern of price 
index dynamics has changed in the post-WWII period, because since then the 
wave pattern has ceased to be clearly traced in the price indices as a consequence 
of the strong positive trend of prices since the 1930s. 

Our findings indicate that such a change after WWII has occurred for the US 
only, where a moderation in amplitude of the waves is evident by looking at the 
4th and 5th price waves. Otherwise, for the UK there is no evidence of any reduc-
tion in the amplitude of long-term fluctuations in prices in the post-WWII period, 
whereas in the case of France the evidence shows that a considerable increase in 
the amplitude of price fluctuations is limited to those long waves taking place  
in the interwar and post-WWII periods.  

Second, long movements in prices are closely related internationally, espe-
cially between the UK and the US. Long waves in UK and US wholesale prices 
are highly synchronized throughout the sample period, a finding that is consistent 
with the historical evidence on prices reported in the empirical literature for the 
major economies (see Goldstein 1988). 

As regards France, although wholesale prices are out-of-phase with the UK 
and the US throughout the 19th century, from the early 20th century they are mov-
ing in phase. Such in-phase relationship holds throughout the 20th century until 
the US wholesale price index begins moving out-of-phase as to the two European 
countries (see Figs. 1 and 2). Indeed, the diverging pattern emerging in the first 
decade of the new millennium indicates that a phase shift between the price 
waves of the US and those of the two European countries could have occurred. 

After Kondratieff (1926) a huge number of long wave chronologies have 
been proposed by various authors, for example, Schumpeter (1939), Clark (1944), 
Dupriez (1947), Mandel (1975), Rostow (1978), van Duijn (1983), among the 
others. Hence, a natural question is to see how the dating scheme identified by the 
D5 detail component accords with the consensus dates found in the literature.  

In Table 2 peaks and troughs dates detected by the D5 component are com-
pared with turns in long waves of wholesale prices as reported in Burns and 
Mitchell (1946), as well as with overall chronologies reported in Kondratieff 
(1935) and Rostow (1978).10  

                                                           
10 Kondratieff's data cover only two and a half long waves, whereas Rostow's data four long waves. 

Rostow's (1978) dating scheme is reported because, in contrast to the majority of scholars, his 
dates are derived from prices rather than production series. 
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Table 2. Peak and trough dates (in bold) of the D5 component of 
wholesale prices for France, the UK and the US 

 USA UK France Kondratieff Rostow 
peak 1813 1812 – 1810–17 1815 
 (1814) (1813)    
trough 1847 1835 1833 1844–51 1848 
 (1843) (1849) (1851)   
peak 1870 1870 1871 1870–75 1873 
 (1864) (1873) (1872)   
trough 1895 1898 1901 1890–96 1896 
 (1896) (1896) (1896)   
peak 1919 1919 1919 1914–20 1920 
 (1920) (1920) (1926)   
trough 1937 1937 1937 – 1935 
 (1932) (1933) (1935)   
peak 1954 1955 1955 – 1951 
trough 1969 1970 1973 – 1972 
peak 1985 1989 1990 – – 
trough 2000 – – – – 

Note: Long waves of wholesale prices as reported in Burns and Mitchell (1946) in pa-
renthesis. Kondratieff's (1926) and Rostow's (1978) datings are reported in the last two 
columns. 

With very few exceptions the dates of long wave phases detected by the D5 
detail component of the wholesale price index match closely with Burns and 
Mitchell's (1946) dates for individual countries. The main difference refers to 
the trough date in the mid-19th century, which is anticipated to the early 1830s 
for France and the UK, although for the UK there is evidence of a prolonged 
period of low prices lasting until 1850, the consensus date for the trough of the 
downswing phase. A minor difference for France is also evident at the turn of 
the 19th century where the trough is slightly delayed of a few years. Despite 
such minor differences in dating particular turning points, the overall dating 
scheme provided by wavelet decomposition analysis shows a close correspond-
ence with Kondratieff's (1926) turning zones and Rostow's (1978) chronology. 
Interestingly, as evidenced by the comparison with Rostow's base dating 
scheme, such a correspondence holds not only for the pre-WWII period, but 
also after WWII, a period in which any evidence whatsoever on long waves in 
prices is difficult to identify because of the positive trend displayed by prices. 

3.2. Long Waves in World GDP Growth Rates 
A question highly debated in the literature on long cycles is whether long 
waves are only ‘price waves’ or such long term fluctuations exist also in pro-
duction series and 'real' variables like industrial output, GDP, etc. 
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In other words, are these price movements simply a monetary phenomenon 
or are they reflecting long waves in overall economic activity? Although prices 
have proven very useful for detecting wave patterns in the early stages of the 
research on the presence of long waves, the trending behavior of wholesale 
prices after WWII has made long-term price fluctuations hard to detect.11 

As a result long waves scholars have shifted their attention away from 
price indices to world GDP dynamics taking advantage of the international da-
tasets provided by Maddison (1995, 2001, 2003, 2009). Such a shift is based on 
the assumption, suggested by the first generation of long wave authors, that 
prices and production have the tendency to move together in the long term.12 

On the theoretical side, the emphasis on economic growth follows, for ex-
ample, from innovation theories like Schumpeter's (1939) theory of economic 
development, where long economic cycles are induced by ‘clusters of innova-
tions’ originating from the innovating economy and spreading to followers 
countries. Hence, long economic cycles are explained by very important inno-
vations or general-purpose technologies (Kriedel 2006) that imply the emer-
gence of long waves of economic growth in world production dynamics. 

 
Fig. 4. Caption – World GDP Annual Growth Rates, 1871–2012 

Following Lewis (1978), Kuczynski (1978), van Duijn (1983), Chase-Dunn and 
Grimes (1995) and, more recently, Korotayev and Tsirel (2010), we investigate 

                                                           
11 Recently, Scheglov (2009) and Grinin, Korotayev, and Tsirel (2011) have shown that when the 

price indices are expressed in grams of gold rather than in dollars, such indices continue to detect 
long wave patterns. 

12 The stagflation period in the 1970s provides a well-known exception to such a synchronous be-
havior. 
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the long wave pattern in World production dynamics using annual GDP growth 
rates between 1871 and 2012 (the World GDP growth rate series is shown in 
Fig. 5).13 

In the top panel of Fig. 5 we show the D5 component of the annual World 
GDP growth rate for the period from 1870 to 2012. To check for the robustness 
of the wave pattern detected by wavelet decomposition analysis in the bottom 
panel of Fig. 5 we show the wave pattern of the world GDP dynamics reported in 
Korotayev and Tsirel (2010: 24, Fig. 7) using spectral analysis and LOWESS.14 

The phase dating of the D5 component in world GDP growth rates shows a 
striking correspondence with Korotayev and Tsirel's (2010) chronology. In-
deed, the overall long-wave pattern of the D5 component is remarkably similar 
to the estimated wave pattern of world GDP dynamics, except in the 1920s, 
where the D5 component shows a temporary increase before the 1929 financial 
crisis due to the strong economic upswing in Germany and Japan consequent to 
the pre-armament boom. 

The sequence of upswings and downswings in world GDP growth rates in 
Fig. 5 delineates the historical long-wave pattern in world system dynamics 
during the last two centuries. In contrast to long-term fluctuations in prices dy-
namics, long wave patterns in the world economic dynamics provides evidence 
of only four long waves, each characterized by the creation and diffusion of 
general purpose technologies fuelling and propelling development and econom-
ic growth: 

– the second15 wave (railway and steel industries) is visible only in the 
downswing phase from the 1870s to 1884, a period in which the world econo-
my experiences a great depression;  

– the third wave (chemical and electrical industries) combines a long wave 
upswing between 1884 and 1902, and the following long decline between the 
early 20th century and the end of WWII (from 1903 to 1943), interrupted in  
the ‘golden 1920s’ by a temporary upswing, interpretable in terms of a recon-
struction boom after WWI and the Germany and Japan's pre-war armament 
boom, which ended with the Great Depression; 

– the fourth wave (petrochemicals and automobiles industries) combines 
the post-war growth upswing phase period between 1944 and 1963, and the 
downswing phase from 1964 to 1986. The first is characterized by the recon-
struction effect of the mid-1940s and 1950s along with the ‘economic miracle’ 
in the European countries, the latter by class struggles and structural adjust-
ments; 
                                                           
13 The data sources are Maddison (2009) and World Bank (2013). 
14 Note that the phase amplitude of the long-wave pattern is different between the two series be-

cause of the treatment of the trend component that is not eliminated in the Korotayev and Tsirel 
(2010) approach. 

15 Although this is the first wave in our sample, we refer to it as the 2nd wave because in the litera-
ture the 1st wave is recognized as the one covering the first half of the 19th century. 
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– the fifth wave (information, telecommunication and microelectronic in-
dustries), based on information technology, is currently under scrutiny in order 
to understand whether the recent financial crisis and the Great economic reces-
sion can represent the onset of a long downswing period following the upswing 
phase lasting since the late 1980s. 

 

 
Fig. 5. Caption – Long waves for World GDP: D5 (top panel) vs Koro-

tayev and Tsirel (2010) (bottom panel) 

3.3 Are Long Waves in Prices and Real Variables Similar? 
Although the evidence provided by the early 20th century long wave authors on 
the existence of long waves in the dynamics of the economy is based on the 
observation of long wave patterns in price series, many authors have later ques-
tioned this relation arguing that long wave patterns in prices do not correspond 
with the long-term movements of real variables (e.g., van Duijn 1983; Gold-
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stein 1988). In particular, according to van Duijn (1983) institutional and mar-
ket changes16 are likely to have weakened the relationship between price 
changes and production changes by affecting the mechanism of price for-
mation, as evidenced by the uninterrupted increase of prices after the 1930s. 

The results of the previous sections allow us analyzing whether these long-
term movements in prices and economic growth are synchronous or not. Table 3 
shows the long wave turning points for prices and economic growth as detected 
in Sections 2 and 3.17  

Two main results are worth noting. First of all, as expected, the timing of 
these long cycles in prices and output is markedly different. There is no evi-
dence of any synchronicity between the chronologies of price and production 
waves, nor before neither after the 1930s. 

Second, as to the lead/lag relationship between production and prices, the 
evidence provided by Goldstein (1988), with production leading prices by a 
value close to 10–15 years, is confirmed only for the pre-1930s period. Indeed, 
after the 1930s the timing relationship between production and prices seems to 
reverse, with the turning points in prices leading those in production by a num-
ber of years that is gradually increasing over time. 

Table 3. Long waves chronologies in production and prices 
 Production Prices
peak – 1873
trough 1885 1896
peak 1902 1920
trough 1944 1935
peak 1964 1951
trough 1987 1972
peak – 1988

4. Conclusions 
In this paper we propose the application of wavelet analysis to detect long 
waves of the type examined by Kondratieff in the 1920s. The usefulness and 
reliability of wavelets for analyzing long wave patterns in economic variables 
has been tested by applying wavelet multiresolution and energy decomposition 
analysis to price and production series examined in the previous literature by 
many authors. 

The advantages shown by wavelet multiresolution decomposition analysis 
for the analysis of long waves studied by Kondratieff are manifold: 

                                                           
16 Examples of such changes are the cost-of-living clauses included in wage contracts, the price-

setting behavior of oligopolistic industries and the increased weight of industrial as compared to 
agricultural goods. 

17 Rostow's (1978) dating of the Kondratieff's price cycle with the additional inclusion of the late 
1980s peak is adopted as representative of the prices chronology. 
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– in contrast to other methodologies estimating simultaneously several cy-
clical components, wavelets, being a local transform, are constructed over finite 
intervals of time. As a consequence, no preliminary detrending procedure is 
needed anymore, as well as any correction for war periods;  

– the outcome is represented by non-periodic cycles, that is oscillations are 
not regular in the timing and duration of upswings and downswings; 

– they can handily detect cycles that are not easily visible in trending series 
(as it is the case of the wholesale price index in the post-WWII period). 

All in all, we believe that wavelet analysis, because of its ability to deal 
with stationary and non-stationary series, can easily overcome most of the 
methodological difficulties faced by previous methods and can provide a unify-
ing framework for analyzing the dynamics of long waves in historical economic 
and financial variables. 
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