©Anton L. Grinin, Leonid E. Grinin

THE PRODUCTION REVOLUTIONS THEORY AND **FORTHCOMING TECHNOLOGIES**

PRODUCTION REVOLUTIONS

- The Agrarian (or Neolithic)
- The Industrial
- The Information-Scientific —— Cybernetic

PRODUCTION PRINCIPLES

- Hunter-Gatherer
- Craft-Agrarian
- Industrial
- Information-Scientific

- The initial phase, when the advanced technologies are developed which later become widespread.
- The final phase of production revolution results in the flourishing of a new production principle.

Agrarian Revolution:

- The initial phase is the transition to primitive hoe agriculture and animal husbandry starting about 12–9 thousand years ago;
- The **final phase** is the transition to irrigation or non-irrigation plough agriculture starting about 5.5 thousand years ago.

Industrial Revolution

- The **initial phase** is a vigorous *development* of seafaring and trade, mechanization on the basis of water engine and other processes in the 15th 16th centuries.
- The **final phase** is the *industrial* breakthrough (the 1760s–1830s) connected with the introduction of various machines and steam energy.

Cybernetic Revolution

- The Initial phase (scientific-informational epoch) which dates to the 1940s – 1990s.
- The final phase, which we call the epoch of controllable systems, will begin in the 2030–2040s and will last until the 2060–2070s.

THE EPOCH OF CONTROLLABLE SYSTEMS

The revolution is called cybernetic because

 the value of this revolution after its completion lies in the ability to create systems of different levels that could be self-controlled or indirectly controlled either through other systems or by means of point impact and corrections.

CYBERNETIC REVOLUTION

The revolution is called cybernetic because

- the main changes will take place including the rapid increase of opportunities to control various processes in different ways;
- the main vector of this revolution will be associated with a synthesis of principle characteristics of various systems which cybernetics deals with: the biological, social and technological ones.

THE LEADING TRENDS OF THE CYBERNETIC REVOLUTION

- Biotechnologies
- Human medicine
- Nanotechnologies

CHARACTERISTICS OF THE CYBERNETIC REVOLUTION

- Self-regulation.
- Individualization.
- The resource and energy saving.
- The development of the predetermined but previously nonexistent properties.
- Miniaturization.

BIOTECHNOLOGY

THE MAIN BIOTECHNOLOGICAL TRENDS ARE

- The production of nutritional supplements and medicines
- The genetic engineering
- The cellular engineering
- Cloning
- Creating alternative energy resources

INDIVIDUALIZATION IN BIOTECHNOLOGY

Fig. 1. GMO acreage world http://www.socionauki.ru/authors/grinin_l_e/other/

INDIVIDUALIZATION IN BIOTECHNOLOGY

Fig. 3. DNA Sequencer tomorrow

Fig. 2. DNA Sequencer today

INDIVIDUALIZATION IN BIOTECHNOLOGY

CLONING

Fig. 4 The cloning of Dolly http://www.socionauki.ru/authors/grinin_l_e/other/

SELF-REGULATION IN BIOTECHNOLOGY

Fig. 5. Gene construction

http://www.socionauki.ru/authors/grinin I e/other/

ENERGY AND RESOURCE SAVING IN BIOTECHNOLOGY

- The biotechnological industry lowers the production costs significantly.
- A number of alternative energy resources are developed by means of biotechnologies, for example, bioethanol, biodiesel, biogas, biohydrogen etc.

MEDICINE

THE MOST DEVELOPING BRANCHES OF MEDICINE:

- Pharmaceuticals;
- Aesthetic medicine;
- Fight against cureless diseases;
- Implantation;
- Reproductive medicine;
- Gene therapy.

INDIVIDUALIZATION IN MEDICINE

 AN INDIVIDUAL TREATMENT PROGRAM

GENE THERAPY

INDIVIDUALIZATION IN MEDICINE

BIONICS

Fig. 6. Amanda Kitts using her bionic arm to squirt mustard

Fig. 7. Tim Hemmes with the DARPA arm

SELF-REGULATION IN MEDICINE

Fig. 8. Biochip

Fig. 9. Da Vinci SHDI

ENERGY AND RESOURCE SAVING

- The number of the produced medical products is constantly growing.
- The most precise diagnostic methods will give an opportunity to define the required concentrations and forms of medicines, thereby reducing the patient's expenses and reducing the price for the treatment.

NANOTECHNOLOGIES

Fig. 10. The global market of nanotechnology (\$ millions)

http://www.socionauki.ru/authors/grinin | e/other/

INDIVIDUALIZATION IN NANOTECHNOLOGIES

- In medicine: biochips created on the biotechnological basis.
- Individualization in agriculture.
- Individualization in devices.

Fig. 11. Nokia Human Form

SELF-REGULATION IN NANOTECHNOLOGIES

- The most important task for nanotechnologies is to make molecules or atoms to group in a self-organized way and to produce new ones resistant to the changing conditions.
- One of the main conceptions of nanotechnology is from larger to smaller.

SELF-REGULATION IN NANOTECHNOLOGIES

SELF-REGULATION IN NANOTECHNOLOGIES

Fig. 13. Fullerene

Fig. 14. "Lotus effect"

http://www.socionauki.ru/authors/grinin_l_e/other/

RESOURCE AND ENERGY SAVING

SOME EXAMPLES:

"Clever glass"

- Electronic paper
- Producing electricity through the organic matter destruction

CONCLUSION

- All the trends of the Cybernetic revolution will be tightly interconnected and support each other.
- Revolution of controllable systems will originate in a narrow sphere.
- The final stage of the Cybernetic revolution will start at the intersection of medicine, biotechnology and gene engineering (probably with nanotechnologies).

CONCLUSION

- The general vector of the breakthrough can be defined as a rapid growth of possibilities to correct or even modify the human biological nature itself.
- Among other results we can achieve a radical expansion of our opportunities to prolong life and improve its biological quality.
- It will take about two or three decades after the beginning of the Cybernetic revolution (in the 2030-2040s) before a wide application takes place.

Thank you for attention!