Bio-Productivity, Collective Learning, and Evolution of Human Social Organization: A Biogeographical Study

Xin Chen Concordia University of Edmonton, Canada

In the context of this study, complex human social organization (CHSO) refers to

Human societies that are characterized by

- 1. Development of cities
- 2. Social stratification
- 3. Concentration of surplus production
- 4. Symbolic communication form (typically, writing systems)
- 5. Political and/or cultural institutions

Arthur Cotterell, 1988, Encyclopedia of Ancient Civilizations, Penguin Books

Development of early CHSO – Geographic explanation – Gerad Diamond (1997) and Ian Morris (2010)

Lucky Latitudes – major early CHSO developed within 20-35° N due to :

- presence of many domesticable plants & animals
- broad non-stopped east-west axis of the Eurasia continent

Latitudinal gradient of species diversity

Gillman, et al. 2015

Latitudinal gradient of human cultural diversity

Gavin and Stepp 2014

A further hypothesis: early CHSO developed in geographic areas that favor <u>Collective Learning</u>

Collective Leaning has been considered as a key concept and unifying theme of human history (Christian 2003, Baker 2016)

Collective Learning is favored by

- Human population size
- Human group interactions (competition, war, cooperation)
- Simplicity of the environment (inverse of diversity)

Bio-productivity is a common factor of all the above

Latitudinal gradient of annual net primary productivity

Gillman, et al. 2015

At low latitude, high bio-productivity favors huntergatherer population growth, and collective learning

The high bio-productivity at low latitude potentially supports larger prehistorical hunter-gatherer population and hence favors collective learning

Bio-productivity is double blade: other impacts on collective learning

The high bio-productivity at low latitude can also disfavor collective learning due to less necessity for group interactions

- Consistent food resources \rightarrow less cooperation and less competition
- Each group needs a smaller range \rightarrow more groups per unit area
- Greater diversity of plants and animals \rightarrow slow learning
- Higher parasite species richness → restrict contacts among groups to reduce infections

Language range extent and diversity in relation to latitude

Gavin and Stepp 2014

Latitudinal gradients of parasites

Cashdan, 2014. PLoS One

Indigenous language diversity and infectious diseases richness

Fincher and Thornhill 2008. Oikos.

At higher latitude, lower bio-productivity necessitates more group interaction, and promotes collective learning

- Stress in food resources \rightarrow more cooperative and more competitive interactions
- Each group needs a broader range \rightarrow less groups per unit area
- Less diversity of plants and animals \rightarrow faster collective learning
- Less pathogen stress \rightarrow restrict contacts among groups to reduce infections

Maximum collective learning at intermediate latitude due to opposing effects of bio-productivity

- Collective learning due to human demography declines with increasing latitude
- Collective learning due to enhanced group interaction increases with increasing latitude
- Overall, the total collective learning peaks at intermediate latitudes

Emergence of early CHSO in "lucky latitudes": intermediate bioproductivity maximizes collective learning

- Bio-productivity generally declines with increasing latitudes
- Early CHSO developed in latitudes where collective learning is most effective
- Collective learning is most effective at intermediate latitudes where there is a balance between a large human population, extensive group interaction, and a moderate level of environmental complexity.
- At low latitudes, although there is a high human population potential, limited group interaction and complex ecosystems hinder collective learning.
- Similarly, at high latitudes, although group interaction can be extensive and ecosystems are simpler, the low population potential restricts collective learning.

Bibliograhgy

Baker, D. 2016. Collective Learning: a potential unifying theme of human history. Journal of World History, 26: 77-104. Cashdan, E. 2001. Ethnic diversity and its environmental determinants: Effects of climate, pathogens, and habitat diversity. American Anthropologist 103: 968-991.

Christian, D. 2003. World history in context. Journal of World History, pp.437-458.

Collard, I.F. and Foley, R.A. 2002. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules? Evolutionary ecology research 4: 371-383.

Fincher, C.L. and Thornhill, R. 2008. A parasite-driven wedge: infectious diseases may explain language and other biodiversity. Oikos 117: 1289-1297.

Gavin, M.C. and Stepp, J.R. 2014. Rapoport's rule revisited: geographical distributions of human languages. PloS one 9: 107623.

Gillman, L.N., Wright, S.D., Cusens, J., McBride, P.D., Malhi, Y. and Whittaker, R.J. 2015. Latitude, productivity and species richness. Global Ecology and Biogeography 24: 107-117.

Hua, X., Greenhill, S.J., Cardillo, M., Schneemann, H. and Bromham, L. 2019. The ecological drivers of variation in global language diversity. Nature communications 10: 2047.

Preisser, W. 2019. Latitudinal gradients of parasite richness: a review and new insights from helminths of cricetid rodents. Ecography 42: 1315-1330.

Sarabian, C., Curtis, V. and McMullan, R. 2018. Evolution of pathogen and parasite avoidance behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences, 373: 20170256.